COORDINATE_SYSTEM_FIXED
Coordinate system
*COORDINATE_SYSTEM_FIXED
"Optional title"
csysid, $x_0$, $y_0$, $z_0$
$\hat{x}_x$, $\hat{x}_y$, $\hat{x}_z$, $\bar{y}_x$, $\bar{y}_y$, $\bar{y}_z$
"Optional title"
csysid, $x_0$, $y_0$, $z_0$
$\hat{x}_x$, $\hat{x}_y$, $\hat{x}_z$, $\bar{y}_x$, $\bar{y}_y$, $\bar{y}_z$
Parameter definition
Variable
Description
csysid
Unique identification number
$x_0$, $y_0$, $z_0$
Coordinate of origin
$\hat{x}_x$, $\hat{x}_y$, $\hat{x}_z$
Direction of local x-axis
$\bar{y}_x$, $\bar{y}_y$, $\bar{y}_z$
Vector needed for the definition of the local y- and z-axis
Description
Defines a fixed local cartesian coordinate system. The system is defined through the input of direction cosines. The origin is located at ($x_0$, $y_0$, $z_0$) and the local x-direction is ($\hat{x}_x$, $\hat{x}_y$, $\hat{x}_z$). The local z-direction is defined as $\hat{\mathbf{z}} = \hat{\mathbf{x}} \times \bar{\mathbf{y}} / \vert \hat{\mathbf{x}} \times \bar{\mathbf{y}} \vert$ and the local y-direction as $\hat{\mathbf{y}} = \hat{\mathbf{z}} \times \hat{\mathbf{x}}$.