INITIAL_DAMAGE_SURFACE_RANDOM

Initial conditions

*INITIAL_DAMAGE_SURFACE_RANDOM
entype, enid, $\Delta_0$, $m$, $D_{max}$, $R$, cid

Parameter definition

Variable
Description
entype
Entity type
options: G, M, P, PS
enid
Entity ID
$\Delta_0$
Defect distribution parameter
$m$
Defect distribution parameter
$D_{max}$
Maximum initial damage
$R$
Optional imperfection radius
cid
ID of a CURVE or FUNCTION defining yield stress (sigy0) as function of initial damage
default: not used

Description

This command is used to define randomly distributed initial defects on the surface of a body. The defects are interpreted as equivalent to an initial damage $D$. The probability $P$ of having an initial defect larger or equal to $D$ on a surface $A$ is defined as:

$P(A,D) = \left\{ 1:D=01exp[A(1DΔ0)m]:0<DDmax0:D>Dmax \right.$

The variables $\Delta_0, m$ and $D_{max}$ are input parameters that typically need to be tuned to match experimental data with a certain spread.

Typical initial damage probability function $P(A,D)$
Typical initial damage probability function $P(A,D)$
$\Delta_0=0.15$, $m=6$, $D_{max}=0.4$, $A=2.0e-5$

The inverse function $D(A,P)$ is used to define the intitial damage level for each integration point near the material surface. In this context $0 \le P \le 1$ is a random number and $A$ is the area represented by the integration point.

$D(A,P) = \left\{ 0:P>P(A,0)1Δ0(ln(1P)A)1/m:P(A,Dmax)<PP(A,0)Dmax:P<P(A,Dmax) \right.$
Typical initial damage function $D(A,P)$
Typical initial damage function $D(A,P)$
$\Delta_0=0.15$, $m=6$, $D_{max}=0.4$, $A=2.0e-5$