MAT_MM_CONCRETE
FE
SPH

Material properties

*MAT_MM_CONCRETE
"Optional title"
mid, $\rho$, $G$
$K_0$, $K_L$, $cid_{cmp}$, $f_t$, $f_c$, $\xi$, $\lambda$, $\gamma$
$\xi_y$, $\xi_r$, $\varepsilon_{p,u0}$, $\varepsilon_{p,r0}$, $\psi_p$, $\psi_r$, $\varepsilon_{p,u}^{min}$, $\varepsilon_{p,r}^{min}$
$m$, $bulk$, $bulk_{cap}$, $cid_{src}$, $cid_{srt}$, $c$, $\sigma_{y,min}$, $\sigma_{y,max}$
$\mu$, $G_{r0}$, $L_{ref}$, $nsplit$

Parameter definition

Variable
Description
mid
Unique material identification number
$\rho$
Density
$G$
Shear modulus
$K_0$
Bulk modulus of intact material
$K_L$
Bulk modulus at full compaction
$cid_{cmp}$
ID of CURVE with pressure vs. inelastic volumetric strain
$f_t$
Uniaxial tensile strength
$f_c$
Uniaxial compressive strength
$\xi$
Parameter controlling transition between region 2 to 3
default: 0.5
$\lambda$
Parameter controlling strength in regions 2 and 3
default: 0.5
$\gamma$
Lode parameter dependency ( = 0 $\rightarrow$ Rankine, = 1 $\rightarrow$ von Mises)
$\xi_y$
Parameter controlling initial yield surface
$\xi_r$
Parameter controlling residual surface
$\varepsilon_{p,u0}$
Transition strain from initial yield surface to ultimate surface (at $p = f_c/3$)
$\varepsilon_{p,r0}$
Transition strain from ultimate surface to residual surface (at $p = f_c/3$)
$\psi_p$
Pressure dependency on transition strains
default: not used
$\psi_r$
Strain rate dependency on transition strains
default: not used
$\varepsilon_{p,u}^{min}$
Lower cap on $\varepsilon_{p,u}$
default: not used
$\varepsilon_{p,r}^{min}$
Lower cap on $\varepsilon_{p,r}$
default: not used
$m$
Exponent on damage factor
default: 1
$bulk$
Bulking parameter ranging between 0 and 1
default: not used
$bulk_{cap}$
Cap on volumetric strain caused by bulking
default: not used
$cid_{src}$
ID of CURVE with stress vs. plastic strain rate (at $p \ge f_c/3$)
$cid_{srt}$
ID of CURVE with stress vs. plastic strain rate (at $p \le -f_t/3$)
$c$
Viscous damping coefficient
default: not used
$\sigma_{y,min}$
Lower cap on flow stress
default: not used
$\sigma_{y,max}$
Upper cap on flow stress
default: not used
$\mu$
Deviation from nominal values
default: not used
$G_{r0}$
Energy per unit area in transition from ultimate to residual surface (at $p = f_c/3$)
default: not used
$L_{ref}$
Reference element length
default: not used
$nsplit$
Node splitting activation flag
options:
0 $\rightarrow$ node splitting inactive
1 $\rightarrow$ node splitting active

Description

Elastic and viscous stresses

The total stress, $\boldsymbol{\sigma}$, is the sum of an elastic component $\boldsymbol{\sigma^e}$ and a viscous component $\boldsymbol{\sigma^v}$.

$\boldsymbol{\sigma} = \boldsymbol{\sigma^e} + \boldsymbol{\sigma^v}$

Elastic component:

$\boldsymbol{\sigma^e} = 2\cdot G\cdot \boldsymbol{\varepsilon_{dev}^e} + K\cdot \boldsymbol{\varepsilon_{vol}^e}\cdot \mathbf{I}$

$G$ is the shear modulus, $\boldsymbol{\varepsilon_{dev}^e}$ is the elastic deviatoric strain, $K$ is the bulk modulus (defined below) and $\boldsymbol{\varepsilon_{vol}^e}$ is the elastic volumetric strain.

Viscous component:

$\boldsymbol{\sigma^v} = c\cdot \boldsymbol{\dot\varepsilon}$

$c$ is an input parameter and $\boldsymbol{\dot\varepsilon}$ is the total strain rate.

Inelastic compaction

Compaction is described by a user-defined curve of compaction pressure vs. inelastic volumetric strain. Parameters $p_0$, $p_L$ and $\varepsilon_L$ are extracted from the curve by the solver. An illustration of a compaction curve and the parameters extracted from it is presented below. The compaction pressure, $p_c\left(\varepsilon_{vol}^p\right)$, is increased gradually from $p_c\left(0\right) = p_0$ to $p_c\left(\varepsilon_L\right) = p_L$ during inelastic compaction, which occurs in region 3 (defined below).

Curve of compaction pressure vs. inelastic volumetric strain.

Functions $f_u$ and $f_r$

Function $f_u$ is divided into three regions, where the pressure, $p$, determines the active region.

Region 1 is active for $p \leq f_c/3$:

$f_u = max\left(0, \eta\cdot (p - p_s)\right)$

The value of $f_u$ at the transition between region 1 and 2 is denoted $f_u^{12}$.

Region 2 is active for $f_c/3 \lt p \leq \xi \cdot p_c$:

$f_u = f_u^{12} + \lambda\cdot \eta\cdot \left(\xi\cdot p_c - f_c/3 \right)\cdot \left(1 - \left(1 - \alpha\right)^{1/\lambda} \right)$

The value of $f_u$ at the transition between region 2 and 3 is denoted $f_u^{23}$.

Region 3 is active for $p \gt \xi \cdot p_c$:

$f_u = f_u^{23}$

Parameters $\eta$, $p_s$ and $\alpha$ are defined as:

$\eta = \frac{g\left(\theta\right)\cdot f_c}{f_c/3-p_s}$
$p_s = \frac{\left(1+1/(2-\gamma)\right)\cdot f_t\cdot f_c}{3\cdot\left(f_t - f_c/(2-\gamma)\right)}$
$\alpha = \frac{p-f_c/3}{\xi\cdot p_c - f_c/3}$

Parameters $f_c$, $f_t$, $\xi$, $\lambda$ and $\gamma$ are input parameters and $g\left(\theta\right)$ is a function of Lode angle.

Function $f_r$ is defined as $f_u$ with an offset along the ordinate, leading to $f_r\left(p = 0\right) = 0$:

$f_r = max\left(0, f_u + \eta\cdot p_s\right)$
Functions $f_u$ and $f_r$ on the compressive meridian $\left(\theta = 60^{\circ}\right)$ and the tensile meridian $\left(\theta = 0^{\circ}\right)$ with parameter $\gamma = 0$ (Rankine yield surface). All values along the ordinate are positive.

Ultimate surface

The ultimate surface, $\sigma_u$, is defined as function $f_u$ but with a cap in region 3:

$\displaystyle{\sigma_u = \left\{ \begin{array}{ccc} f_u & : & \mbox{Regions 1 and 2} \\ f_u^{23}\cdot \sqrt{1-min\left(1,\left(\frac{p-\xi\cdot p_c}{p_c\cdot (1-\xi)}\right)^2\right)} & : & \mbox{Region 3} \end{array} \right. }$
Ultimate surface $\sigma_u$ is defined as function $f_u$ but with a cap in region 3.

Parameters $f_c$, $f_t$, $\xi$, $\lambda$, $\gamma$ and $p_0$ control the shape of the ultimate surface.

Parameter $\xi$ controls the transition between regions 2 and 3.
Parameter $\lambda$ controls the strength in regions 2 and 3.
Parameter $\gamma$ controls the Lode angle dependency.
Influence of parameter $\gamma$ displayed from $\pi$-plane.
Parameter $p_0$ controls the crushing pressure, above which inelastic compaction occurs.

Initial yield surface

The initial yield surface, $\sigma_{y0}$, is defined based on the ultimate surface and input parameter $\xi_y$:

$\sigma_{y0} = \xi_y\cdot \sigma_u$
Paramete $\xi_y$ controls the yield surface.

Residual surface

The residual surface, $\sigma_r$, is defined based on the ultimate surface and input parameter $\xi_r$:

$\displaystyle{\sigma_r = \left\{ \begin{array}{ccc} \beta\cdot f_r & : & \mbox{Regions 1 and 2} \\ \beta\cdot f_r^{23}\cdot \sqrt{1-min\left(1,\left(\frac{p-\xi\cdot p_c}{p_c\cdot (1-\xi)}\right)^2\right)} & : & \mbox{Region 3} \end{array} \right. }$
$\beta = min\left(1, \xi_r\cdot \eta\cdot \frac{p}{f_r}\right)$
Parameter $\xi_r$ controls the residual surface.

Yield criterion and plastic flow

$\begin{array}{ccc} \sigma_{eff} = \sigma_y \rightarrow \mbox{Yield} & : & \mbox{Regions 1 and 2} \\ \left(\frac{\sigma_{eff}}{\sigma_y}\right)^2 + \left(\frac{p/p_c-\xi}{1-\xi}\right)^2 \rightarrow \mbox{Yield} & : & \mbox{Region 3} \end{array}$

Parameter $bulk$ controls the return to the flow surface during plastic flow. With $bulk = 0$, the plastic flow is purely deviatoric. With $bulk = 1$, associated flow is used, meaning that the plastic flow is both deviatoric and volumetric. The volumetric strain caused by bulking can be capped with parameter $bulk_{cap}$. Bulking can only occur in regions 1 and 2. Radial return is used in region 3.

Parameter $bulk$ controls the return to the flow surface during plastic flow in regions 1 and 2.

Damage

Damage is divided into tensile damage, $D_t$, and crushing damage, $D_c$. Crushing damage is divided into deviatoric crushing damage, $D_{c,dev}$, and volumetric crushing damage, $D_{c,vol}$.

Pressure and region dictate the type of damage that accumlates. Damage grows with plastic flow and is initiated once the ultimate surface is reached. Node splitting, activated with input parameter $nsplit$, is only used for tensile damage.

Tensile damage accumulates at negative pressures and does not affect the material's behavior in compression $\left(p \ge 0 \right)$.

$D_t = min\left(1,\sum{\frac{d\varepsilon_{eff}^p}{\varepsilon_{p,r}}}\right)$

Crushing damage accumulates at positive pressures and affects the material's behavior in tension $\left(p \lt 0 \right)$.

$D_c = \sqrt{D_{c,dev}^2 + D_{c,vol}^2}$
$D_{c,dev} = min\left(1,\sum{\frac{d\varepsilon_{eff}^p}{\varepsilon_{p,r}}}\right)$
$D_{c,vol} = min\left(1,\sum{\frac{d\varepsilon_{vol}^p}{\varepsilon_{L}}}\right)$

A damage factor, $D_{f}$, is defined as:

$\displaystyle{D_f = \left\{ \begin{array}{ccc} \left(1-D_c\right)^m & : & p \ge 0 \\ \left(1-D_c\right)^m\cdot \left(1-D_t\right)^m & : & p \lt 0 \end{array} \right. }$

Parameter $m$ is an input parameter.

The contour plot attribute "Damage" in the GUI displays maximum of tensile and crushing damage.

Pressure and region dictate the type of damage that accumulates.

Strain rate hardening

Strain rate hardening is included with curves of strength $\left(\sigma_y^{rate}\right)$ vs. plastic strain rate $\left(\dot{\varepsilon}^p\right)$. The curve with ID $cid_{src}$ controls the hardening in compression, $p \gt f_c/3$, and the curve with ID $cid_{srt}$ controls the hardening in tension, $p \leq -f_t/3$. Linear interpolation is used for intermediate pressures.

The definition of plastic strain rate depends on region:

$\displaystyle{\dot{\varepsilon}^p = \left\{ \begin{array}{ccc} \dot{\varepsilon}_{eff}^p & : & \mbox{Regions 1 and 2} \\ \sqrt{\left(\dot{\varepsilon}_{eff}^p\right)^2 + \left(\dot{\varepsilon}_{vol}^p\right)^2} & : & \mbox{Region 3} \end{array} \right. }$

The additional strength due to strain rate hardening is added to the quasi-static strength as follows:

$\sigma_y^{dyn} = \sigma_y^{qs} + \sigma_y^{rate}\cdot D_f$
$p_c^{dyn} = p_c^{qs} + \sigma_y^{rate}\cdot D_f$

Transition: yield-ultimate surface

The transition from yield surface to ultimate surface is strain-based. The strain required in the transition is defined as:

$\varepsilon_{p,u} = \varepsilon_{p,u0}\cdot\left(1 + \psi_p\cdot \left(\frac{f_u^*+\psi_r\cdot\sigma_y^{rate}}{f_c}-1\right)\right)$

Input parameter $\varepsilon_{p,u0}$ is the strain required at $p = f_c/3$. Input parameters $\psi_p$ and $\psi_r$ controls the pressure and strain rate dependency, respectively.

The difference between function $f_u^*$ and function $f_u$ is that the former does not evolve with inelastic compaction. The two functions are therefore identical for material that has not undergone inelastic compaction, i.e., $f_u^*=f_u(p_c=p_0)$.

A lower limit on $\varepsilon_{p,u}$ can be introduced with parameter $\varepsilon_{p,u}^{min}$.

Transition: ultimate-residual surface

The transition from ultimate surface to residual surface is strain based for positive pressures. The strain required in the transition is defined as:

$\varepsilon_{p,r} = \varepsilon_{p,r0}\cdot\left(1 + \psi_p\cdot \left(\frac{f_u^*+\psi_r\cdot\sigma_y^{rate}}{f_c}-1\right)\right)$

Input parameter $\varepsilon_{p,r0}$ is the strain required at $p = f_c/3$.

At negative pressures, an energy-based transition is used if input parameter $G_{r0}$ is specified as greater than zero. A transition strain is then derived from the specified $G_{r0}$:

$\varepsilon_{p,r} = \frac{G_{r0}}{V_e^{1/3}\cdot f_c}\cdot \left(1 + \psi_p\cdot \left(\frac{f_u^*+\psi_r\cdot\sigma_y^{rate}}{f_c}-1\right)\right)$

$V_e$ is the element volume, automatically set for each element at initialization. Note that parameter $\varepsilon_{p,r0}$ must be defined even if $G_{r0} > 0$ since the energy-based transition only operates at negative pressures. The advantage of using the energy-based transition instead of the strain-based transition is that it reduces the mesh dependency.

A lower limit on $\varepsilon_{p,r}$ can be introduced with parameter $\varepsilon_{p,r}^{min}$. If the energy-based transition is used, an element reference length, $L_{ref}$, must be specified. The lower limit on $\varepsilon_{p,r}$ is then defined as $\varepsilon_{p,r}^{min}\cdot L_{ref}/V_e^{1/3}.$

Illustration of the transition strains with $\psi_p = 1$. The transition strains reach maximum at $p = \xi\cdot p_0$. All values along the ordinate are positive.

Flow stress

The flow stress, $\sigma_y$, is defined as:

$\displaystyle{\sigma_y = \left\{ \begin{array}{ccc} \sigma_{y0} & : & \varepsilon_{eff}^p = 0 \mbox{ and } D_f = 1 \\ \sigma_u\cdot h & : & \varepsilon_{eff}^p \gt 0 \mbox{ and } D_f = 1 \\ \sigma_u\cdot D_f + \sigma_r\left(1-D_f\right) & : & \varepsilon_{eff}^p \gt 0 \mbox{ and } D_f \lt 1 \end{array} \right. }$

The plastic hardening, $h$, is defined as:

$h = min\left(1,\sum{\frac{d\varepsilon_{eff}^p}{\varepsilon_u}}\right), h(0) = \xi_y$
Illustration of effective stress vs. effective plastic strain from a confined compression test, demonstrating the evolving flow stress.

Upper and lower limits on the flow stress can be defined with input parameters $\sigma_{y,max}$ and $\sigma_{y,min}$.

Material inhomogeneity

Deviations can be introduced with input parameter $\mu$.

$x_1 = 1 + \mu\cdot\left(2\cdot rnd - 1\right)$
$x_2 = 1 - \mu\cdot\left(2\cdot rnd - 1\right)$

$rnd$ is a random number in the interval [0,1]. Parameters $p_0$, $p_L$, $f_t$, $f_c$ are scaled with $x_1$ and parameter $\varepsilon_L$ with $x_2$. The deviations are introduced on integration point level at initialization.

Influence of maximum deviations on ultimate surface with $\mu = 0.25$. The surface with $x_1 = 1$ corresponds to the surface based on nominal values.