MAT_MM_CONCRETE
Material properties
"Optional title"
mid, $\rho$, $G$
$K_0$, $K_L$, $cid_{cmp}$, $f_t$, $f_c$, $\xi$, $\lambda$, $\gamma$
$\xi_y$, $\xi_r$, $\varepsilon_{p,u0}$, $\varepsilon_{p,r0}$, $\psi_p$, $\psi_r$, $\varepsilon_{p,u}^{min}$, $\varepsilon_{p,r}^{min}$
$m$, $bulk$, $bulk_{cap}$, $cid_{src}$, $cid_{srt}$, $c$, $\sigma_{y,min}$, $\sigma_{y,max}$
$\mu$, $G_{r0}$, $L_{ref}$, $nsplit$
Parameter definition
Description
Elastic and viscous stresses
The total stress, $\boldsymbol{\sigma}$, is the sum of an elastic component $\boldsymbol{\sigma^e}$ and a viscous component $\boldsymbol{\sigma^v}$.
$\boldsymbol{\sigma} = \boldsymbol{\sigma^e} + \boldsymbol{\sigma^v}$
Elastic component:
$\boldsymbol{\sigma^e} = 2\cdot G\cdot \boldsymbol{\varepsilon_{dev}^e} + K\cdot \boldsymbol{\varepsilon_{vol}^e}\cdot \mathbf{I}$
$G$ is the shear modulus, $\boldsymbol{\varepsilon_{dev}^e}$ is the elastic deviatoric strain, $K$ is the bulk modulus (defined below) and $\boldsymbol{\varepsilon_{vol}^e}$ is the elastic volumetric strain.
Viscous component:
$\boldsymbol{\sigma^v} = c\cdot \boldsymbol{\dot\varepsilon}$
$c$ is an input parameter and $\boldsymbol{\dot\varepsilon}$ is the total strain rate.
Inelastic compaction
Compaction is described by a curve of compaction pressure vs. densification (inelastic volumetric strain), defined by the user. From the defined curve, parameters $p_0$, $p_L$ and $\varepsilon_L$ are extracted by the solver. An example curve and the parameters extracted from it is presented below. The compaction pressure, $p_c\left(\varepsilon_{vol}^p\right)$, is increased from $p_0$ to $p_L$ during inelastic compaction, which occurs in region 3 (defined below).
Functions $f_u$ and $f_r$
Function $f_u\left(p,p_c,g\left(\theta\right)\right)$ is divided into three regions. Pressure, $p$, determines active region:
$\begin{array}{ccc} \mbox{Region} & \mbox{Pressure} & f_u \\ 1 & p \leq \frac{f_c}{3} & max\left(0, \eta\cdot \left(p-p_s\right)\right) \\ 2 & \frac{f_c}{3} \lt p \leq \xi\cdot p_c & f_u\left(\frac{f_c}{3},p_c,g\left(\theta\right)\right) + \lambda\cdot \eta\cdot \left(\xi\cdot p_c - f_c/3\right)\cdot \left(1 - \left(1 - \alpha\right)^{1/\lambda}\right) \\ 3 & p \gt \xi\cdot p_c & f_u\left(\xi\cdot p_c, p_c, g\left(\theta\right)\right) \end{array}$
where:
$\eta = \frac{g\left(\theta\right)\cdot f_c}{f_c/3-p_s}$
$p_s = \frac{\left(1+1/(2-\gamma)\right)\cdot f_t\cdot f_c}{3\cdot\left(f_t - f_c/(2-\gamma)\right)}$
$\alpha = \frac{p-f_c/3}{\xi\cdot p_c - f_c/3}$
$f_c$, $f_t$, $\xi$, $\lambda$ and $\gamma$ are input parameters and $g\left(\theta\right)$ is a function of Lode angle.
Function $f_r\left(p,p_c,g\left(\theta\right)\right)$ is defined as $f_r = max(0, f_u + \eta\cdot p_s)$. Functions $f_u$ and $f_r$ are used to describe the flow surface and the transition strains.
Ultimate surface
The ultimate surface, $\sigma_u(p,p_c,g\left(\theta\right)$, is defined as function $f_u$ but with a cap in region 3:
$\displaystyle{\sigma_u = \left\{ \begin{array}{ccc} f_u & : & \mbox{Region 1 and 2} \\ f_u\left(\xi\cdot p_c,p_c,g\left(\theta\right)\right)\cdot \sqrt{1-min\left(1,\left(\frac{p-\xi\cdot p_c}{p_c\cdot (1-\xi)}\right)^2\right)} & : & \mbox{Region 3} \end{array} \right. }$
Parameters $f_c$, $f_t$, $\xi$, $\lambda$, $\gamma$ and $p_0$ control the shape of the ultimate surface:
In addition to demonstrating the influence of $p_0$, the figure above also demonstrates the evolution of the ultimate surface during inelastic compaction (from $p_c = 0.5\cdot p_{0,ref}$ to $p_c = p_{0,ref}$).
The maxium strength is increased with increased crushing pressure as:
$\sigma_u\left(\xi\cdot p_c, p_c, g\left(\theta\right)\right) = \sigma_u\left(\xi\cdot p_0, p_0, g\left(\theta\right)\right)\cdot \frac{\xi\cdot p_c - f_c/3}{\xi\cdot p_0 -f_c/3}$
Initial yield surface
The initial yield surface, $\sigma_{y0}\left(p,p_c,g\left(\theta\right)\right)$, is defined as:
$\sigma_{y0} = \xi_y\cdot \sigma_u$
$\xi_y$ is an input parameter.
Residual surface
The residual surface, $\sigma_r\left(p,p_c,g\left(\theta\right)\right)$, is defined as:
$\displaystyle{\sigma_r = \left\{ \begin{array}{ccc} \beta\cdot f_r & : & \mbox{Region 1 and 2} \\ \beta\cdot f_r\left(\xi\cdot p_c,p_c,g\left(\theta\right)\right)\cdot \sqrt{1-min\left(1,\left(\frac{p-\xi\cdot p_c}{p_c\cdot (1-\xi)}\right)^2\right)} & : & \mbox{Region 3} \end{array} \right. }$
$\beta = min\left(1, \xi_r\cdot \eta\cdot \frac{p}{f_r}\right)$
$\xi_r$ is an input parameter.
Yield criterion and plastic flow
$\begin{array}{ccc} \sigma_{eff} = \sigma_y \rightarrow \mbox{Yielding} & : & \mbox{Region 1 and 2} \\ \left(\frac{\sigma_{eff}}{\sigma_y}\right)^2 + \left(\frac{p/p_c-\xi}{1-\xi}\right)^2 \rightarrow \mbox{Yielding} & : & \mbox{Region 3} \end{array}$
Parameter $bulk$ controls the type of plastic flow in region 1 and 2. With $bulk = 0$, the plastic flow is purely deviatoric. With $bulk = 1$, associated flow is used, meaning that the plastic flow is both deviatoric and volumetric. The volumetric strain caused by bulking can be capped with parameter $bulk_{cap}$. Radial return is used in region 3.
Damage
Damage is divided into tensile damage, $D_t$ and crushing damage, $D_c$. Crushing damage is divided into deviatoric crushing damage, $D_{c,dev}$, and volumetric crushing damage, $D_{c,vol}$.
Pressure and region determines which type of damage that accumlates. Damage grows with plastic flow and is initiated once the ultimate surface is reached. Node splitting, $nsplit$, is optional and is only used for tensile damage.
Tensile damage developes during negative pressures and does not affect the materials behavior in compression $\left(p \ge 0 \right)$.
$D_t = min\left(1,\sum{\frac{d\varepsilon_{eff}^p}{\varepsilon_r}}\right)$
Crushing damage develops during positive pressures and affects the materials behavior in tension $\left(p \lt 0 \right)$.
$D_c = \sqrt{D_{c,dev}^2 + D_{c,vol}^2}$
$D_{c,dev} = min\left(1,\sum{\frac{d\varepsilon_{eff}^p}{\varepsilon_r}}\right)$
$D_{c,vol} = min\left(1,\sum{\frac{d\varepsilon_{vol}^p}{\varepsilon_{L}}}\right)$
A damage factor, $D_{fac}$ is defined as:
$\displaystyle{D_{fac} = \left\{ \begin{array}{ccc} \left(1-D_c\right)^m & : & p \ge 0 \\ \left(1-D_c\right)^m\cdot \left(1-D_t\right)^m & : & p \lt 0 \end{array} \right. }$
$m$ is an input parameter.
Contour plot attribute "Damage" in the GUI displays maximum of tensile and crushing damage.
Strain rate dependency
Strain rate dependency is defined by curves containing stress vs. plastic strain rate. Parameters $cid_{src}$ and $cid_{srt}$ can refer to the same curve. In the case of different curves, the strain rate term, $\sigma_y^{rate}\left(sr,p\right)$, is pressure dependent and the following holds:
$\begin{array}{ccc} \mbox{Pressure} & & \sigma_y^{rate} \mbox{ defined by}\\ p \leq -\frac{f_t}{3} & : & \mbox{curve with id. $cid_{srt}$} \\ -\frac{f_t}{3} \lt p \leq \frac{f_c}{3} & : & \mbox{interpolation} \\ p \gt \frac{f_c}{3} & : & \mbox{curve with id. $cid_{src}$} \end{array}$
Parameter $sr$ is the plastic strain rate, defined as:
$\displaystyle{sr = \left\{ \begin{array}{ccc} \dot{\varepsilon}_{eff}^p & : & \mbox{Region 1 and 2} \\ \sqrt{\left(\dot{\varepsilon}_{eff}^p\right)^2 + \left(\dot{\varepsilon}_{vol}^p\right)^2} & : & \mbox{Region 3} \end{array} \right. }$
The strain rate term is added to the quasi-static flow stress and crushing pressure:
$\sigma_y^{dyn} = \sigma_y^{qs} + \sigma_y^{rate}$
$p_c^{dyn} = p_c^{qs} + \sigma_y^{rate}$
Transition strains
Transition from initial yield surface to ultimate surface and from ultimate surface to residual surface is controlled by parameters $\varepsilon_{p,u}\left(p,g\left(\theta\right),sr\right)$ and $\varepsilon_{p,r}\left(p,g\left(\theta\right),sr\right)$, respectively.
$\varepsilon_{p,u} = \varepsilon_{p,u0}\cdot\left(1 + \psi_p\cdot \left(\frac{f_u^*+\psi_r\cdot\sigma_y^{rate}}{f_c}-1\right)\right)$
$\varepsilon_{p,r} = \varepsilon_{p,r0}\cdot\left(1 + \psi_p\cdot \left(\frac{f_u^*+\psi_r\cdot\sigma_y^{rate}}{f_c}-1\right)\right)$
$\varepsilon_{p,r0}$, $\varepsilon_{p,u0}$, $\psi_r$ and $\psi_p$ are input parameters. Note that strain rate dependency requires $\psi_p\gt 0$ and $\psi_r\gt 0.$
Function $f_u^*$ is defined as function $f_u$ but independent of inelastic compaction, i.e. $f_u^*\left(p,g\left(\theta\right)\right) = f_u\left(p,p_0,g\left(\theta\right)\right)$.
Lower caps on the transition strains can be defined with input parameters $\varepsilon_{p,u}^{min}$ and $\varepsilon_{p,r}^{min}$.
An energy-based transition from ultimate to residual surface can be defined with parameter $G_{r0}$. The transition strain for negative pressures is then defined as:
$\varepsilon_{p,r}\left(p,g\left(\theta\right),sr,V_e\right) = \frac{G_{r0}}{V_e^{1/3}\cdot f_c}\cdot \left(1 + \psi_p\cdot \left(\frac{f_u^*+\psi_r\cdot\sigma_y^{rate}}{f_c}-1\right)\right)$
$V_e$ is the element volume, automatically set for each element at initialization. Note that $\varepsilon_{p,r0}$ still must be defined, since $G_{r0}$ only operates at negative pressures.
If parameter $L_{ref}$ is defined, parameter $\varepsilon_{p,r}^{min}$ is scaled with element size by a factor $L_{ref}/V_e^{1/3}$.
Flow stress
The flow stress, $\sigma_y\left(p,p_c,g\left(\theta\right),\varepsilon_{eff}^p,sr,D_{fac}\right)$, is defined as:
$\displaystyle{\sigma_y = \left\{ \begin{array}{ccc} \sigma_{y0} & : & \varepsilon_p^{eff} = 0 \mbox{ and } D_{fac} = 1 \\ \sigma_u\cdot h & : & \varepsilon_p^{eff} \gt 0 \mbox{ and } D_{fac} = 1 \\ \sigma_u\cdot D_{fac} + \sigma_r\left(1-D_{fac}\right) & : & \varepsilon_p^{eff} \gt 0 \mbox{ and } D_{fac} \lt 1 \end{array} \right. }$
The plastic hardening, $h$, is defined as:
$h = min\left(1,\sum{\frac{d\varepsilon_{eff}^p}{\varepsilon_u}}\right), h(0) = \xi_y$
Caps on the flow stress can be defined with input parameters $\sigma_{y,max}$ and $\sigma_{y,min}$.
Modeling of material inhomogeneity
Deviations to surfaces and transition strains can be introduced with input parameter $\mu$.
$rnd_f^1 = 1 + \mu\cdot\left(2\cdot rnd - 1\right)$
$rnd_f^2 = 1 - \mu\cdot\left(2\cdot rnd - 1\right)$
$rnd$ is a random number between 0 and 1. Parameters $p_0$, $p_L$, $f_t$, $f_c$ are scaled with $rnd_f^1$ and parameter $\varepsilon_L$ with $rnd_f^2$. The scaling is done on integration point level at initialization.