MAT_LEE_TARVER
Material properties
"Optional title"
mid, $\rho_0$, $G$
$A$, $B$, $n$, $A_{u}$, $B_{u}$, $R_{1,u}$, $R_{2,u}$, $\omega_{u}$
$A_r$, $B_r$, $R_{1,r}$, $R_{2,r}$, $\omega_r$, $e_{0,r}$, $p_0$
$a$, $b$, $c$, $d$, $e$, $g$, $I$, $x$
$y$, $z$, $F_1$, $F_2$, $F_3$, $G_1$, $G_2$, $L$
$c_{vr}$, $c_{vu}$, $c_{pu}$
Parameter definition
Description
This is the classical Lee-Tarver reactive burn model. The fraction of combusted material is denoted $F$ and it ranges from 0 to 1. The unreacted material is modeled as elasto-plastic with flow stress:
$\displaystyle{\sigma_y = A + B(\varepsilon_{eff}^p)^n}$
The pressure in the unreacted phase is defined as:
$\displaystyle{ p_u = A_u \left( 1 - \frac{\omega_u}{R_{1,u} V_u} \right) \mathrm{e}^{-R_{1,u}V_u} + B_u \left( 1 - \frac{\omega_u}{R_{2,u} V_u} \right) \mathrm{e}^{-R_{2,u}V_u} + \omega_u e_u}$
Here $V_u$ is the relative volume of the unreacted material and $e_u$ is the specific internal energy of the unreacted material.
In an equivalent way the pressure in reaction products is defined as:
$\displaystyle{ p_r = A_r \left( 1 - \frac{\omega_r}{R_{1,r} V_r} \right) \mathrm{e}^{-R_{1,r}V_r} + B_r \left( 1 - \frac{\omega_r}{R_{2,r} V_r} \right) \mathrm{e}^{-R_{2,r}V_r} + \omega_r e_r}$
There is assumed be a pressure equilibrium between the phases in a mixture of unburned and burned material $p \equiv p_u \equiv p_r$. This is achieved by adjusting the relative volumes of the phases while maintaining:
$\displaystyle{ V = F V_r + (1-F) V_u}$
where $V$ is the relative volume of the mixture, i.e. the ratio of initial to current density.
$\displaystyle{ V = \frac{\rho_0}{\rho}}$
The deflagration/detonation rate is described with a burn model consisting of three terms:
$\displaystyle{ \frac{\mathrm{d}F}{\mathrm{d}t} = \frac{\mathrm{d}F_1}{\mathrm{d}t} + \frac{\mathrm{d}F_2}{\mathrm{d}t} + \frac{\mathrm{d}F_3}{\mathrm{d}t} }$
The first term (stage I) models the initiation based on compression:
$\displaystyle{ \frac{\mathrm{d}F_1}{\mathrm{d}t} = \left\{ \begin{array}{ccc} I(1-F)^b (\frac{\rho}{\rho_0} - 1 - a)^x & : & F \leq F_1 \\ 0 & : & F > F_1 \end{array} \right. }$
The second term (stage II) describes the early stage of hot spot growth:
$\displaystyle{ \frac{\mathrm{d}F_2}{\mathrm{d}t} = \left\{ \begin{array}{ccc} G_1(1-F)^c F^d \left(\frac{p}{p_0}\right)^y & : & F \leq F_2 \\ 0 & : & F > F_2 \end{array} \right. }$
The third one (stage III) handles the rapid growth as hot spots coalesce:
$\displaystyle{ \frac{\mathrm{d}F_3}{\mathrm{d}t} = \left\{ \begin{array}{ccc} 0 & : & F \lt F_3 \\ G_2(1-F)^e F^g \left(\frac{p}{p_0}\right)^z & : & F \geq F_3 \end{array} \right. }$
This material model works with shock viscosity. This adds an extra pressure term $q$ to the total pressure. It is calculated as:
$\displaystyle{ q = \left\{ \begin{array}{ccc} \rho L (1.5 L \dot{\varepsilon}_{vol}^2 - 0.06 c \dot{\varepsilon}_{vol}) & : & \dot{\varepsilon}_{vol} \lt 0 \\ 0 & : & \dot{\varepsilon}_{vol} \geq 0 \end{array} \right. }$
Here $c$ is the speed-of-sound, $\dot{\varepsilon}_{vol}$ is volumetric strain rate and $L$ is the local element size.